Twist Language Reference

XXX

TI Release

Release 1

Author

Kevin P. Albrecht

Date

17 May 2001

E-mail

kevin@albrecht.net
Website

http://www.eng.usf.edu/~kpalbrec/
Contents

Overview
Syntax

Comments

Variables 



Declaration


Usage


Contexts & Conversion

Declaratives

Expressions

Math


Random Number Generation

Program Control


Gotos and Line Labels


Ifs


Loops

String Manipulation


‘@’ Operator


SNEXT command


SGET command


SZERO command

File Input/Output


FIN / FOUT


FCLOSE


FGETLINE


FPUT / FPUTN

Console Input/Output


PUT / PUTN


GETLINE

Miscellaneous Statements


Blocks
Implementation

How to Use

Error Codes

Known Bugs & Limitations


Length of Program
Overview

Twist is a new programming language designed for elegance and simplicity.  It strives to become a language for easily working with strings and files.

Syntax

Comments

[see SCANNER.HH: Scanner::SkipBlankSpaces ()]

Comments are treated as whitespace by the Twist Interpreter's parser.  There are two types of comments: one-line and multi-line. A one-line comment consists of the token `[[` and everything after it on the line.  A multi-line comment consists of the tokens `[` and `]` and everything between them.  If a multi-line comment is never completed, an error will occur.

Example:

var x: 0 [[ This is a one line comment!

if 1 > x

[This is a ...

multiple line comment!]

sayn [this is also a valid comment] "x is less than 1"
end

Variables

Declaration

If the implicit option (see Declaratives) is on, a variable is automatically declared by the interpreter the first time that a value is assigned to it.  However, if the explicit option is on (which is default), then before a value can be assigned to a variable, it must be declared with the var keyword as follows (the parts in blue are optional):

var variable_name : expression
If the assignment expression is omitted, the interpreter will automatically initialize variable_name with an empty string.

Usage

After the declaration of a variable, a value can be assigned to it using the following syntax:

variable_name : expression
Contexts & Conversion

All variables are stored internally as strings.  However, it is easy to treat the variables as other data types when desired.  The bool, int, rat, and str keywords return values that fit in one of the contexts.  All operators transform the data to match the relevant context automatically.

Boolean Context

[see VALUE.HH: Value::Bool(char*)]

[see PARSER.HH: Parser::Parse ()]

When a variable is used in the boolean context (used with a Boolean operator), it is considered false if it matches any of the following: "false", "0", "0.", "0.0", "0.00", "0.000", "0.0000", or "0.00000".

There are also two constants set by the interpreter when the program starts that can be used for the boolean context: 'true' and 'false'. The 'true' value is set to "1" and the 'false' value is set to "0".

The bool keyword will return either a "1" or "0".

Integer Context

Integers are whole numbers.  

The int keyword will truncate the mantissa (fractional part of a rational number) if the value in the variable is a rational number.  If the value in the variable is a non-number, it will return “0”.

Rational Context

A rational number can be a whole number or a number with a fractional part.

The rat keyword will return the same value that is currently in the variable if it is a whole number.  If the value in the variable is a non-number, it will return “0”.

String Context

A string is any sequence of characters.

The str keyword will always return the same value that it is given.  It is included only for completeness.  There is a constant set by the interpreter when the program starts: nl.  It indicates a line break:

say “This is on one line.” & nl & “And this is on another.”

Declaratives

[see COMMON.HH: Common::Common ( )]

A declarative is an optional statement at the beginning of a program. Only one declarative is allowed per program.  The syntax of the declarative is as follows (the parts in blue are optional):

? option option option...
Currently, there is only one option: implicit/explicit.  By default, variables must be declared using the variable ( var ) keyword.  If the 'implicit' declarative is used, variables are automatically declared by the interpreter the first time they are used in the program. The 'explicit' declarative is included for completeness.

Expressions

An expression is made up of variables, literals, and operators.  All expressions evaluate to a number result, a string result, or a boolean result.  The following table shows the order of operations for all of the operators in Twist (in order from lowest to highest):

	Precedence
	Operator
	Name
	Arg(s)
	Type
	Return Type
	Example

	1
	is
	is
	2
	string
	boolean
	“dog” is “dog”

	1
	isnot
	is not
	2
	string
	boolean
	“dog” isnot “dug”

	1
	@
	character get
	2
	str, num
	one-char string
	“dog”@1 is “d”

	1
	=
	equal to
	2
	number
	boolean
	1 = 1

	1
	<>
	not equal to
	2
	number
	boolean
	1 <> 2

	1
	<
	less than
	2
	number
	boolean
	1 < 2

	1
	>
	greater than
	2
	number
	boolean
	2 > 1

	1
	<=
	less than or equal
	2
	number
	boolean
	1 <= 1

	1
	>=
	greater than or equal
	2
	number
	boolean
	2 >= 0

	2
	+
	unary plus
	1
	number
	number
	+1

	2
	-
	unary minus
	1
	number
	number
	-10

	2
	+
	plus
	2
	number
	number
	1 + 2

	2
	-
	minus
	2
	number
	number
	15 – 2

	2
	&
	concatenate string
	2
	string
	string
	“I’m ” & “Bob.”

	2
	or
	relational or
	2
	boolean
	boolean
	true or false

	3
	*
	multiply
	2
	number
	number
	2 * 2

	3
	/
	divide
	2
	number
	number
	1 / 2

	3
	and
	relational and
	2
	boolean
	boolean
	true and true

	4
	not
	relational not
	1
	boolean
	boolean
	not false

	4
	int
	int conversion
	1
	any
	integer
	int “1”

	4
	rat
	rat conversion
	1
	any
	rational
	rat “1.2222”

	4
	str
	str conversion
	1
	any
	string
	str 10

	4
	bool
	bool conversion
	1
	any
	boolean
	bool 0

	4
	( )
	parentheses
	1
	any
	any
	5 * (2 + 1)


Math

Random Number Generation

The mrand command generates a pseudo-random number between the given bounds.

mrand variable, lower_bound_expression, upper_bound_expression
Program Control

Gotos and Line Labels

A line label is used to give a name to a line so that a goto can jump to that location.  Line labels look like this:

:label_name statement
As the above indicates, a line label may be on its own line or placed on the same line as a statement.  At almost any point in a program, program control can jump to a location using a matching goto command as follows:

goto label_name
If the same label name is declared multiple times, the last one declared will be jumped to when goto is called.  There is a special line label, start, that if declared, will automatically be jumped to when the program begins:

:start

Ifs

The if structure will execute all the statements within only if the boolean expression evaluates to be true:

if expression
    statements…

end

Loops

The loop structure will execute all the statements within while the boolean expression evaluates to be true:

loop expression
    statements…

end

String Manipulation

[see TREE.HH: TreeNode::SetValue, ::SetValueD, ::SetContent]

All variables have a built-in position pointer which can be used by the string manipulation commands to search and modify strings.  The position of the string pointer is only reset to 0 when the szero command is used or when a string with a shorter length than the current string is assigned to the variable.

‘@’ Operator

The ‘@’ allows direct access to a single character of a string.  It can be used to get a character out of a string or set one character in a string.  Both of these are demonstrated here:

destination_of_character_variable = string_expression @ number_expression
string_variable @ number_expression = expression
SNEXT Command

Moves the string pointer to the position after the next occurrence of the search string.  If  the search cannot be found, auto will be set to “snext 0”.

snext var, search_string

SGET Command

Put the substring from source variable between the current position and the position of the search string into the destination variable.  Moves the string pointer to the position before the next occurrence of the search string.  If the search cannot be found, auto will be set to “sget 0”.

sget source_var, destination_var, search_string

SZERO Command

Moves the string pointer to the beginning of the string.

szero var
File Input/Output

FIN / FOUT

These commands open a file as specified in their only argument.  If the file is already open, auto will be set to “fin opened-already” or “fout not-opened”.   If there is another error opening the file, auto will be set to “fin 0” or “fout 0”.

fin filename_expression
fout filename_expression
FCLOSE

Closes a file opened by fin or fout.  If the file is already closed, auto will be set to “fclose closed-already”.

fclose filename_expression
FGETLINE

Gets the next line from the specified file.  If the end of the file has been reached, auto is set to “fgetline eof”.

fgetline filename_expression, variable
FPUT / FPUTN

Output the string equivalent of the expression to the specified file.  fputn does the same, but also adds a newline character to the output.

fput filename_expression, output_expression
Console Input/Output

PUT / PUTN

Output the string equivalent of the expression to the console.  putn does the same, but also adds a newline character to the output.

put output_expression

GETLINE

Gets a line of input from the console.

getline variable
Miscellaneous Statements

A statement is usually contained on one line.  To put more than one statement on a line, follow the statement with a semicolon ( ; ).

Blocks

A block is a simple structure that allows variable inside of it to be invisible outside that block:

block

    statements…

end

Implementation

How To Use (documentation not completed)

(empty body)

Error Codes (documentation not completed)

-------------------

Program Error Codes

-------------------

P01: Invalid command line argument

 The interpreter cannot determine the meaning of a command line

 argument passed to it.

P02: Error opening file

 The file specified does not exist, is write protected, or is in-

 accessible in some way.

------------------

Syntax Error Codes

------------------

S01: Undefined token

 The scanner encountered a token that is not defined by the language.

S02: Undefined identifier

 The program is trying to access a variable that has not been declared.

 To solve this problem, declare all variables before they are used or

 use the 'implicit' declarative in the declarative statement at the

 beginning of the program.

S03: Unexpected token

 The parser expected a token other than the one shown.  Be sure that

 the statement causing the error follows the described syntax.

S04: Unexpected end-of-file

 The parser encountered the end of the file before it expected.

S05: Missing end-of-line

S06: Missing assignment operator

S07: Missing right parenthesis

S08: Invalid expression

S09: Identifier already declared

S10: Type is incompatible

S11: Connot assign a new value to a constant

S12: Nesting too deep

S13: Invalid parsing point

S14: Only one declarative sequence allowed per program

S15: Subroutine already declared

-------------------

Runtime Error Codes

-------------------

R01: Code segment overflow

R02: Runtime error

R03: Divide by zero

R04: Runtime stack overflow error

R05: Runtime stack empty

R06: Invalid execution point

R07: Too many gotos were executed

R08: Invalid assignment

R09: Attempted to call undefined routine

Known Bugs and Limitations

Length of Program

Programs are currently limited to a length of about 20,000 tokens, but when programs of that length become useful, it shouldn't be too hard to increase that size.

